
PhD Preliminary Written Exam Problem #10 Page 1 of 6
Fall 2014 Computer Architecture Solution

(a) [1.2 pts] This problem investigates how the same code is compiled into different
instructions for different processors with different instruction set architectures.

Code to compute C = A + B in each instruction set architecture

Stack Accumulator Register-Memory Register-Register

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R3, R1, B
Store R3, C

Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

For this problem, assume that the values A, B, C, D, E, and F reside in memory. Also
assume that instruction opcodes are represented by 4 bits, memory addresses are 32
bits wide, and that the processor has 32 general purpose registers.

For each instruction set architecture shown above (Stack, Accumulator, Register-
Memory, Register-Register), what is the total code size (in bits) for a code that
computes C = A + B? Assume that the instruction sets use variable width instructions.

PhD Preliminary Written Exam Problem #10 Page 2 of 6
Fall 2014 Computer Architecture Solution

Stack:

Push A // opcode + memory address = 4 + 32 = 36 bits
Push B // opcode + memory address = 4 + 32 = 36 bits
Add // opcode = 4 bits
Pop C // opcode + memory address = 4 + 32 = 36 bits

Total code size = 36*3 + 4 = 112 bits

Accumulator:

Load A // opcode + memory address = 4 + 32 = 36 bits
Add B // opcode + memory address = 4 + 32 = 36 bits
Store C // opcode + memory address = 4 + 32 = 36 bits

Total code size = 36*3 = 108 bits

Register-Memory:

Load R1, A // opcode + register id + memory address = 4 + 5 + 32 = 41 bits
Add R3, R1, B // opcode + 2x reg id + memory address = 4 + 2*5 + 32 = 46 bits
Store R3, C // opcode + register id + memory address = 4 + 5 + 32 = 41 bits

Total code size = 41*2 + 46 = 128 bits

Register-Register:

Load R1, A // opcode + register id + memory address = 4 + 5 + 32 = 41 bits
Load R2, B // opcode + register id + memory address = 4 + 5 + 32 = 41 bits
Add R3, R1, R2 // opcode + 3x register id = 4 + 3*5 = 19 bits
Store R3, C // opcode + register id + memory address = 4 + 5 + 32 = 41 bits

Total code size = 41*3 + 19 = 142 bits

PhD Preliminary Written Exam Problem #10 Page 3 of 6
Fall 2014 Computer Architecture Solution

(b)[1.5 pts] Consider a processor with a 4-way set-associative cache with one-word
cache blocks and a total cache size of 16 words. The cache uses a least recently used
(LRU) replacement policy and is initially empty.

The following sequence of decimal word address references is seen by the cache:
2, 86, 53, 61, 29, 37, 28, 2, 45, 20, 6, 22, 14, 6, 53, 29, 78, 4, 22, 70, 61, 54, 78, 45, 2,
61, 37, 45, 6, 29, 28

(i) Indicate whether each address reference is a hit or a miss.

Address Set Hit/Miss
 2 2 M

 86 2 M

 53 1 M

 61 1 M

 29 1 M

 37 1 M

 28 0 M

 2 2 H

 45 1 M

 20 0 M

 6 2 M

 22 2 M

 14 2 M

 6 2 H

 53 1 M

 29 1 H

 78 2 M

 4 0 M

 22 2 H

 70 2 M

 61 1 M

 54 2 M

 78 2 H

 45 1 H

 2 2 M

 61 1 H

 37 1 M

 45 1 H

6 2 M

29 1 H

28 0 H

PhD Preliminary Written Exam Problem #10 Page 4 of 6
Fall 2014 Computer Architecture Solution

(ii) Show the final cache contents.

Set Contents

0 20

 4

 28

1 61

 37

 45

 29

2 54

 78

 2

 6

3

PhD Preliminary Written Exam Problem #10 Page 5 of 6
Fall 2014 Computer Architecture Solution

(c) [0.9 pts] Consider the following short program executing on a simple 5-stage in-order
pipeline (Fetch, Decode, Execute, Memory, Writeback). For arithmetic instructions, the
destination register is listed first, followed by the source registers. For example, ADD
R3, R2, R1 adds the contents of R1 and R2 and stores the result in R3.

I1: LW R1, 0(R2) ;load R1 from address 0+R2

I2: LW R3, 0(R4) ;load R3 from address 0+R4

I3: ADD R5, R1, R1 ;R5 = R1 + R1

I4: SUB R6, R7, R8 ;R6 = R7 - R8

I5: SW R6, 4(R2) ;store R6 to address 4+R2

Assume a pipeline that does not implement forwarding. Insert NOP instructions in the
instruction schedule to avoid hazards. How many cycles does it take to execute the
modified code (with NOPs inserted)? Assume that a register read can take place in the
same cycle that a value is written back to the register file.

I1 F D X M W

I2 F D X M W

NOP NOP

I3 F D X M W

I4 F D X M W

NOP NOP

NOP NOP

I5 F D X M W

Cycle 1 2 3 4 5 6 7 8 9 10 11 12

It takes 12 cycles to execute the code with NOPs inserted.

PhD Preliminary Written Exam Problem #10 Page 6 of 6
Fall 2014 Computer Architecture Solution

(d) [0.4 pts] The MIPS instruction set provides 32 general purpose registers and 32
floating point registers. Describe one reason why adding more registers to an instruction
set can be beneficial and one reason why adding more registers can be detrimental.

Reasons to increase the number of registers include:
1. Greater freedom to employ compilation techniques that consume registers, such as
loop unrolling, common subexpression elimination, and avoiding name dependences.
2. More locations that can hold values to pass to subroutines.
3. Reduced need to store and re-load values.

Reasons not to increase the number of registers include:
1. More bits needed to represent a register name, thus increasing the overall size of an
instruction or reducing the size of some other field(s) in the instruction.
2. More CPU state to save in the event of an exception.
3. Increased chip area and increased power consumption.

